

Project Introduction

- Purpose for Project
 - Developing New Storm Drain System Master Plan (SDSMP)
- Purpose of the Community Meeting
- History of Drainage Studies
- Overall Goals of the SDSMP
- Two Phases of SDSMP
 - Phase 1: Existing Conditions Assessment
 - Phase 2: Develop Future Stormwater Management Plan

SDSMP Project Description

- Advanced Storm Water Master Plan
- GIS Database Update
- Comprehensive Analysis of Existing Facilities (ECAR)
- Identify and Prioritize Future Drainage Improvements
- Identify Potential Limitations/Hurdles
- Develop More Feasible Solutions (i.e. phasing)
- SMART System (Monitoring/Preparation)
- Water Quality

Existing Conditions Assessment Report (ECAR)

- SDSMP Phase 1 (Existing System Drainage Evaluation)
- Goals
 - Revise Design Criteria (Preview Criteria vs. Current)
 - > To Evaluate City-Owned Mainline Infrastructure
 - Develop Comprehensive Models
 - Calibrate (Correlate) Models
 - Identify System Restrictions
 - Prioritize System Deficiencies

Advanced Stormwater Modeling

- Software (XPStorm)
- Hydraulics (Linked 3D Surface to Underground SD)
- Hydrology: Rain-on-Grid (New Approach)
- OC Hydrology: Precipitation, Loss Rates, Storm Pattern
- Best Method for flat areas

Benefits of Advanced Stormwater Modeling

- More Realistic Storm Drain Sizing
- Lower Construction Costs
- Comprehensive Model Track Impacts of Inc. Improvements.
- Easier to Develop Feasible
 Phasing of Projects

Model Calibration (Correlation)

- December 6th, 2018 Storm Event
 - Other Storms Considered
 - Jan 18, 2010
 - Sept 10, 2015
- 2 Locations
 - 17th Street/Pomona Avenue
 - Anaheim Street/19th Street
- Recorded Data, Measurements, Photos, Video

Anaheim Avenue/19th Street December 6, 2018

Model Calibration/Correlation (Costa Mesa)

Model Correlation (12/6/2018)

December 6, 2018 duration depths, in <i>inches</i> , based on Costa Mesa COOP 165 Precpitation Station		5 minutes	30 minutes	1 hour	2 hours	3 hours	6 hours	12 hours
		0.18	0.65	1.26	2.06	2.61	2.99	3.18
storm fequencies, in <i>n</i> -year	based on NOAA Atlas 14	3	13	58	107	123	53	23
	based on Orange County Standard Precipitation	<2	7	41	> 100	> 100	46	17

STORM EVENT 2018-12-06

Orange County Design Criteria Change (1986)

- Building Standards Change over Time.
- Orange County Changed 1986 (After Most of Costa Mesa Drainage Infrastructure Constructed)

CHANGES:

- 10-Year Storm Then = 5-Year Storm Now
- 25-Year Storm Then = 10-Year Design Now
- 100-Year Storm Then = 25-Year Design Now
- County Facilities in Costa Mesa = 25-Year Systems (now)

Future Drainage Improvement Hurdles

- Downstream Facility Restrictions (OC Channels, City Newport SD)
- Environmental Concerns/Erosion Potential
- Urbanization (Little Room for Attenuation of Stormwater)
- Flat Topographic Relief = Flat Storm Drain Slopes
- Water Quality Requirements
- Constructability/Feasibility

Stormwater Model Development

- City Divided Into 4 Watersheds
 - West
 - North
 - East(north)
 - East(south)
- Models Run for 10-, <u>25-</u>, and 100-Year
- Boundary Conditions

XPStorm Results

- West Watershed
- 25-Year Storm
- Maximum Depths

West

XPStorm

- North Watershed
- 25-Year Storm
- Maximum Depths

XPStorm Results

- East (north) Watershed
- 25-Year Storm
- Maximum Depths

East (N)

XPStorm Results

- East (south) Watershed
- 25-Year Storm
- Maximum Depths

East (S)

System Priority Rankings

- Hydraulic Deficiency (Based on new OC Criteria)
 - Ponding Depths
 - Inlets & Pipes
 - Ranking Point System (0 10) 10 being the most deficient
- Safety Factor Identification
 - Location
 - Essential Facilities
 - Highly Traveled Roadways
 - Proximity to Multiple Homes/Buildings
 - Known Flooded Areas
 - Ranking Point System (0 10) 10 being highest risk for safety

Preliminary Priority Rankings (West)

LEGEND

Highest Priority Storm Drain

High Priority Storm Drain

▲ High Priority Surface Drainage/CB

Moderate Priority Storm Drain

Moderate Priority Surface Drainage/CB

Model Boundary

Preliminary Priority Rankings (North)

Preliminary Priority Ranking East(N)

LEGEND

Highest Priority Storm Drain

Highest Priority Surface Drainage/CB

High Priority Storm Drain

HIgh Priority Surface Drainage/CB

Moderate Priority Storm Drain

Moderate Priority Surface Drainage/CB

Model Boundary

Preliminary Priority Rankings -East (S)

LEGEND

Highest Priority Storm Drain

▲ Highest Priority Surface Drainage/CB

High Priority Storm Drain

▲ High Priority Surface Drainage/CB

Moderate Priority Storm Drain

Moderate Priority Surface Drainage/CB

Model Boundary

Summary

- Extensive Review of Existing Facilities and Records of Previous Ponding
- Development of Comprehensive State-of-the-Art Stormwater Model
- Correlation/Validation of Models Using Known Rainfall/Ponding Documentation
- Identification of Systems' Functionality
- Development of Preliminary Priority Ranking
- Acquire Public Comments & Finalize ECAR
- Next Phase of SDSMP = Development of Proposed Improvements

Draft Existing Conditions Assessment Report:

https://www.costamesaca.gov/Storm

Email:

STORM@costamesaca.gov

Questions?

